
CSE 6220-O01: Intro to HPC Homework 5 Nov 25–Dec 01

This homework is ungraded/optional and meant purely to help you be better prepared for the
exams. Feel free to collaborate with your fellow students in the respective Ed Discussions post.

Question 1 (10 points)
Parallel Efficiency You have an algorithm, FOO, that you want to run on a distributed memory
system. The algorithm takes 2n3/2τ time on a sequential processor, where τ is the time for a
single computation. The distributed version is written for p processors and is listed below:

Algorithm: Distributed-FOO

1 for i in 1 . . .
√
p:

2 Sequential−Foo(. . .)
3 MPI Communicate(. . .)

The communication step takes time α + n
pβ where α is the latency and β is the inverse band-

width of the system. Data is evenly distributed across processors.

(a) (2 points) Is this algorithm work optimal? Explain.

Solution:
Yes. Each of the p processors does

√
p calls to FOO on n/p data for each call, which works

out to the same amount of work as the sequential algorithm.

(b) (2 points) What is the speedup of this algorithm on p processors?

Solution:
Speedup is sequential time T1 over parallel time Tp so we can write it as

S =
2n3/2τ

2n3/2

p τ +
√
p(α+ n

pβ)

(c) (3 points) What is the parallel efficiency of this algorithm?

Solution:
Efficiency is S/p so we get

E =
2n3/2τ

2n3/2τ + p3/2(α+ n
pβ)

=
1

1 + α
τ
p3/2

2n3/2 + β
τ

√
p

2n

(d) (3 points) What is the isoefficiency function for this algorithm? (Remember: the isoef-
ficiency function is a lower bound on how fast n must grow as a function of p to keep
constant efficiency). Explain your answer.

Solution:
We can ignore the constants in the efficiency function above. We need n to grow as some
function of p to keep both the α and β terms constant. From the α term, we see that
n = Ω(p). And from the β term, we see that n = Ω(

√
p). We choose the larger of these,

so the isoefficiency function is n = Ω(p).

CSE 6220-O01 Homework 5, Page 2 of 25 Fall 2024

Question 2 (10 points)
Bumper cars. Researchers from the Sociology department are looking for some help doing a
simulation. They want to simulate a large city with millions of people. All the people in the
city are to ignore one another unless they bump into someone. If they bump into someone,
they will then be polite and exchange pleasantries for a minute before resuming. If someone
bumps into a conversation then it ends and begins with the two people and the third continues
on in a random direction. The researchers want to model this and see how the crowd reacts
over time. The modeled city is similar to New York with millions of people spread throughout
the city to start.

(a) (4 points) You are tasked with implementing this on the cluster. What sort of software
frameworks (OpenMP, MPI or CUDA) from this class would you use for this project? Be
specific about why you want to use this in your design as opposed to something else. You
might want to think about Part B before answering this.

Solution:
There is no right answer here. This is a twist on the nbody simulation as people. So you
would want some sort of multi threading through cuda, threads or omp to update every
person’s movement. You would also want some sort of inter process communication to
shift people from ”zones” to handle localized processing and hit detection.

(b) (6 points) Write pseudo code that models how you would implement this simulation if
this was a real life task. Many things are going on here that should be considered. Think
about how the data and workload will be distributed. This may then influence how you
design hit detection to work. Keep in mind that one node may have more people to
simulate than another, so how will time slices be handled?

Solution:
Again this will be somewhat dependent on part A:
Things they should probably include: - distributing workload across nodes / cpus -
shifting people to different threads / processors based on movement - how do they
model a person with a vector / quaternion? - how to handle a slice of time - - handling
hit detection - this could be done through something like a neighbors list using their
movement vectors - handling conversations - ending conversations - how do you keep
different threads / processors in time step
Full credit should handle distributing tasks, person modeling, hit detection, conversing,
and shifting people through different zones(threads / processors) of the city.

CSE 6220-O01 Homework 5, Page 3 of 25 Fall 2024

Question 3 (10 points)
Polynomial Evaluation With Horner’s Rule

Evaluating a degree n polynomial is the task of solving

P (x) = an−1 ∗ xn−1 + · · ·+ a2 ∗ x2 + a1 ∗ x+ a0

for a given list of n coefficients: A = [an−1, an−2, · · · , a1, a0] and some specific input value of
x.

The iterative method for evaluating is a serial for loop over all the coefficients that runs in
O(n) time.

serial polynomial eval in python
def poly_eval(A : List[], x : int):

x_to_power_degree = 1
value = 0
for coeff in A:

value += x_to_power_degree * coeff
x_to_power_degree *= x

return value

As is evident, this method runs in Θ(n) time and is not intended to scale to multiple proces-
sors.

Horner’s rule however, re-interprets the evaluating a polynomial is as follows:

P (x) = a0 + x(a1 + x(a2 + · · ·x(an−1)))

This way of ”rephrasing” polynomial evaluation looking at the computation differently allows
us to parallelize the evaluation to an arbitrary number of processors.

Construct a distributed memory parallel algorithm for P number of processors (that is, all
communication between any two ranks must be explicit). Assume that number of coefficients
N >> P and that each processor is ranked starting at zero through P − 1. Further assume
that each rank contains its block of coefficients at the start of the algorithm, i.e. rank 0 contains
coefficients A[0 : N/P], rank 1 contains coefficients A[N/P : 2N/P] and that N is divisible by
P.

Analyze the asymptotic complexity of your parallel algorithm. Please express your solution
as pseudocode or short phrases for each step, do not write actual code for your algorithm.

Solution:

Notice that we can decompose this recurrence as a sum of two recurrences as shown below:

P (x) = x0(a0 + x2(a2 + x2(a4 + · · ·x2(an−2))))

+ x1(a1 + x2(a3 + x2(a5 + · · ·x2(an−1))))

CSE 6220-O01 Homework 5, Page 4 of 25 Fall 2024

Notice that both of them do not have any dependent terms from each other, and therefore can
be computed concurrently. We can further generalize this into a Horner’s rule that allows for
P way parallel evaluation with the following formula:

P (x) = x0(a0 + xp(a0+p + xp(a0+2p + · · ·xp(an−p+0))))

+ x1(a1 + xp(a1+p + xp(a1+2p + · · ·xp(an−p+1))))

+ x2(a2 + xp(a2+p + xp(a2+2p + · · ·xp(an−p+2))))

+ x3(a3 + xp(a3+p + xp(a3+2p + · · ·xp(an−p+3))))

...

+ xp−1(ap−1 + xp(ap−1+p + xp(ap−1+2p + · · ·xp(an−1))))

The solution that follows is based on this, with P total processors ranked starting at zero.

1. All P processors run an exclusive prefix sum over input value x with multiply as the
operator. After this step, each processor holds xp where p is the rank of that processor.

2. Last processor with rank P − 1 multiplies its local value xP−1 with x again to obtain
xP .

3. Broadcast xP to all processors.

4. Compute local evaluations using received value xP and local xp−1 serially and store
into local partial evaluation.

5. All reduce the local partial sum with addition as the operator.

Analysis:

1. Prefix sum for calculating powers of x takes Θ((a+ b) logP) time.

2. Broadcast of xP takes another Θ((a+ b) logP) time.

3. Local evaluation takes Θ(N/P) time.

4. All reduce takes another Θ((a+ b) logP) time.

Summing all these up, our overall asymptotic runtime is Θ
(
N
P + (a+ b) logP

)
where a is the latency cost and b is the bandwidth cost of inter-rank communication.

CSE 6220-O01 Homework 5, Page 5 of 25 Fall 2024

Question 4 (10 points)
Cartesian Reduce

You are tasked with implementing a new kind of MPI reduce, called an MPI CartesianReduce.
This reduce is only defined for processors arranged in a d-dimensional grid, and is defined
component-wise as follows:

B[i1, i2, ..., id]←− A[i1, i2, ..., id]

+

n∑
k=1,k 6=i1

A[k, i2, ..., id]

+
n∑

k=1,k 6=i2

A[i1, k, ..., id]

+ ...

+
n∑

k=1,k 6=id

A[i1, i2, ..., k]

In words, this means that each processor ends up with the sum of the elements that vary in
exactly one or zero indices. Let’s take a look at an example in two dimensions:

1 1 1 1

1 2 3 1

1 4 5 1

1 1 1 1

7 11 13 7

10 13 14 10

14 15 16 14

7 11 13 7

We see that each processor ends up with the sum of all of the elements in its row, and all of
the elements in its column.

(a) (4 points) Design a distributed memory algorithm to compute the MPI CartesianReduce
for a d-dimensional torus, where each dimension has length p, and each processor needs
to send nwords. Pseudo-code is not required, but you provide enough detail so that your
answer to part (b) is clear.

Solution:
Do d rounds of allreduce, each allreduce is over p processors.

(b) (4 points) What is the time spent on communication, T (n, p, d)? Explain.

Solution:
A single allreduce is either O(logp(α + nβ)) for tree based or O(pα + nβ) for the band-
width optimal version. The final answer should be either of those, scaled by d.

(c) (2 points) Your friend has designed a new architecture that will allow each node to re-
ceive d messages and send d messages at once. How can you use their architecture to
write a faster version of this algorithm? How does the communication time change?

CSE 6220-O01 Homework 5, Page 6 of 25 Fall 2024

Solution:
You can now do each allreduce in parallel, leading to factor of d improvement in the
latency.

CSE 6220-O01 Homework 5, Page 7 of 25 Fall 2024

Question 5 (10 points)
Uh oh...something is wrong. One of the nice features of MPI is that it includes a lot of prim-
itives that we can use. But what happens if you find out they aren’t working correctly? In
particular, suppose you’re trying to implement an algorithm and find out that MPI Barrier()
no longer works.

For this problem, assuming the following pieces of information.

1. The number of nodes is P .

2. The communicator is comm.

3. The rank of a processor is rank.

(a) (6 points) Give detailed pseudocode for your own MPI Barrier() using point-to-point op-
erations. Your pseudocode should be reasonably detailed, that is, close to being “com-
pileable.”

Solution:
This is a basic solution to the problem (there are likely many)

1: procedure MPI BARRIER(...)
2: int magic = 454;
3: int magic recv[P];
4: MPI Request requests[P*2];
5: for i← 0 to P do
6: MPI Isend(&magic, 1, MPI INT, i, magic, comm, requests+i);
7: MPI Irecv(magic recv+i, 1, MPI INT, i, magic, comm, requests+i+P);
8: MPI Waitall(P*2, requests, MPI STATUSES IGNORE);
9: return MPI SUCCESS;

(b) (2 points) What do you think the asymptotic lower bound is?

Solution:
Since this could be implemented with something as simple as MPI CHAR (which is one
byte) we’re looking for something that recognizes that this will be limited by the latency.
Tmsg(n) = O(α)

(c) (2 points) Why does your algorithm work and reach that bound?

Solution:
We’re looking for a well reasoned argument here.

CSE 6220-O01 Homework 5, Page 8 of 25 Fall 2024

Question 6 (10 points)
Dense Matrix Algorithms

(a) (5 points) Consider the matrix-vector multiplication operation, y = Ax, where A is an
n×nmatrix and x and y are n×1 vectors. Each output y vector element may be computed
as y[i] =

∑n
j=0A[i, j] · x[j]

Suppose that the matrix is partitioned with 1D column-wise partitioning, such that each
processor stores n

p complete columns of the matrix A and has matching n
p elements of

the vectors x and y, i.e., if a processor holds column j (i.e., A[∗, j]), then it also owns x[j]
and y[j]. Design an efficient distributed memory parallel algorithm to compute matrix-
vector multiplication in parallel. Analyze the run-time of this algorithm and specify the
computation and communication time.

Solution:

• Each processor computes partial local dot products with local A and x values, and
stores them in a local vector y

′

Computation: O(n
2

p)

• Using All-to-all reduction, the final distributed y vector is computed from local y
′

vectors.
Computation: O(n)
Communication: O(τ log p+ µnpp) = O(τ log p+ µn)

Total runtime = O(n
2

p + τ log p+ µn)

(b) (5 points) Let A be an n×n matrix. The transpose of A, denoted AT is defined as AT [i, j]
= A[j, i]. Design a parallel algorithm to compute AT from A using an n × n virtual torus
topology. During the execution of the algorithm, each processor can hold at most a con-
stant number of matrix elements at a time (can be greater than one). Specify the total
runtime for your algorithm.

Solution:

In a n × n torus, the maximum distance D(i,j)→(j,i) an element A[i, j] has to travel to
destination (j, i) is D(i,j)→(j,i)= 2×min((j − i) mod n, (i− j) mod n) To see this, note
that with wraparound the distance (j − i) (assume j ≥ i without loss of generality) can
be represented two ways: (j − i) or n − (j − i). This distance must be covered twice,
corresponding to rows and columns. It follows from the above equation that the number
of steps to transpose any element is bounded by
by 2× bn2 c = O(n) Therefore, D(i,j)→(j,i) = O(n)

We now propose an algorithm that achieves transposition within n step
Move each element A[i, j]

• North/South (i− j) mod n steps

• East/West (j − i) mod n steps

CSE 6220-O01 Homework 5, Page 9 of 25 Fall 2024

Note that, (i− j) mod n+ (j − i) mod n ≤ n algorithm terminates in n steps
Furthermore, in this algorithm each processor receives at most 4 elements one from each
direction before passing elements along, so each processor holds constant number of
matrix elements max (i.e. 5).

CSE 6220-O01 Homework 5, Page 10 of 25 Fall 2024

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

Figure 1: Results of a breadth-first search on a 2-D grid graph. The source is the upper-leftmost
vertex. Each vertex is labeled by its level as computed by the BFS.

Question 7 (10 points)
BFS cache analysis. Suppose you run a sequential breadth-first search (BFS) on a two-dimensional
(2-D) grid graph with n vertices. An example appears in fig. 1, where the n = 36 vertices are
laid out on a 2-D grid with regular spacing, and each vertex is connected by edges to its north,
south, east, and west neighbors. (Though the example is square, do not assume a square grid
graph in this problem.) If you start from the upper-leftmost vertex and label each unseen
vertex by its level during the search, you will get the labels shown in fig. 1.

In the following exercises, you will analyze the cache behavior of BFS on grid graphs for a
machine with a two-level memory hierarchy. Let Z be the size of the cache and L be the line
size. Furthermore, assume that the vertices in a row are laid out consecutively in memory, and
ignore the storage cost of edges. That is, suppose we don’t need to store edges at all and that
you can determine location in memory of any neighbor of a vertex in O

(
1
)

time.

(a) (5 points) For what sizes n would you expect good cache behavior? “Good” means no
thrashing of cache lines due to insufficient capacity. Do not assume anything about the
order in which the algorithm visits the neighbors of a vertex. Explain your reasoning.

Solution:
The key insight derives from remembering that the working set of BFS is the frontier that
it maintains. Since you are told you cannot make any assumptions about the visit order,
in the worst case you might need to keep the entire frontier in cache.
For a 2-D grid graph, the planar separator theorem, which you saw in graph partitioning,
tells you the frontier cannot be larger thanO

(√
n
)
. (Can you figure out why?) Therefore,

as long as you have enough cache lines to hold the frontier, i.e.,
√
n = O

(
Z
L

)
or n =

O
((

Z
L

)2), then there is enough capacity to avoid thrashing.

(b) (5 points) Suppose the graph is, instead, a three-dimensional (3-D) grid graph, again
with n vertices. For what value of n would you expect to see cache thrashing due to a
lack of capacity?

Solution:
Separators for 3-D grids scale like O

(
n2/3

)
. Thus, by the same reasoning as above, n =

O
((

Z
L

)3/2).

CSE 6220-O01 Homework 5, Page 11 of 25 Fall 2024

Question 8 (10 points)
Distributed 3D fast Fourier transforms (FFTs). Consider a supercomputer that can execute up
to Rmax operations per unit time. (That is, an embarrassingly parallel program that performs
no communication and moves no data through the memory hierarchy will execute at this
rate.) Further suppose that the architecture of this machine is a distributed memory network
of P nodes connected by a 3D torus. Let the time to send a message of size m words between
any two nodes, in the absence of congestion, be m/βlink, where βlink is the bandwidth (words
per unit time) of a network link. (That is, we simplify our usual (α, β) model by ignoring any
latency term, α.) Within each node, suppose there is a two-level memory hierarchy with a fast
memory of size Z and main memory bandwidth of βmem words per unit time. Lastly, assume
that the node itself can execute up to R0 operations per unit time, so that its balance (within
the node) is B0 ≡ R0

βmem
ops per word.

Suppose you wish to compute a 3D FFT. Here are its main performance characteristics.

• Let n3 denote the size of the input. The output will be of the same size.
• The total work (e.g., arithmetic operations) is O

(
n3 log n

)
.

• Let the parallel execution time be T ≥ max{Tcomp, Tmem, Tnet}, where Tcomp is the time to
perform just the arithmetic operations; Tmem = Tmem(n;Z, βmem) is the time spent on lo-
cal (intranode) communication between slow and fast memory; and Tnet = Tnet(n;βlink, P)
is the time spent on network communication. This equation says the running time is,
in the best case, the largest of these three components, assuming arithmetic, local data
movement, and network communication can all be completely overlapped.

• It is possible to show that Tmem = O
(n3 log n

Pβmem logZ

)
and Tnet = O

(n3

P 2/3βlink

)
.

With this background, answer the following questions.

(a) (1 point) Assume the arithmetic work is perfectly parallelizable. Calculate Tcomp, in a
big-O sense.

Solution:
The time is just the arithmetic work divided by the machine peak.

Tcomp = O
(n3 log n

Rmax

)
(1)

(b) (2 points) Next, show that Tmem = O
(B0

logZ
· Tcomp

)
.

Solution:
If the peak is Rmax, then P = Rmax

R0
. Thus,

Tmem = O
(n3 log n

Pβmem logZ

)
= O

(n3 log n
Rmax
R0

βmem logZ

)
= O

(B0

logZ
· n

3 log n

Rmax

)
(2)

= O
(B0

logZ
· Tcomp

)
, (3)

since B ≡ R0
βmem

and using the result for Tcomp from part (a).

CSE 6220-O01 Homework 5, Page 12 of 25 Fall 2024

(c) (2 points) Define “network node balance” for a 3D FFT as Bnet ≡
R

2/3
0

βlink
. Ignoring the 2/3

exponent for the moment, briefly explain what this quantity tells you about a system.

Solution:
Ignoring the 2/3 exponent, this ratio is like “operations per word,” but for the node’s
peak arithmetic throughput compared to its network link bandwidth. Therefore, its a
measure of balance with respect to the network, and tells you how many arithmetic
operations a node can do in the time it takes to move a word of data into or out of the
node.

(d) (2 points) Derive an expression for Tnet in terms of Bnet.

Solution:
With a little algebra, one can show that

Tnet = O
(
Bnet ·

n3

R
2/3
max

)
. (4)

(e) (3 points) Assume that communication dominates, i.e., Tcomp � Tmem and Tcomp � Tnet

for most supercomputers you can build from today’s parts. Now suppose you have a
choice of two supercomputers with the same Rmax. One uses high-end server-grade pro-
cessors and the other uses processors more commonly found in mobile phones. Which
system is likely to be faster, and why?

Solution:
Since communication dominates and both Tmem ∝ B0 and Tnet ∝ Bnet, the system with
the lower execution time will have smaller B0 and Bnet values. In today’s systems, the
typical B0 and Bnet values for server-grade processors is larger than those of mobile
phones. Therefore, you should prefer the mobile phone system.

CSE 6220-O01 Homework 5, Page 13 of 25 Fall 2024

Question 9 (10 points)
Six Degrees of HPC. Last semester, you worked closely with the sociology department to
model some behavior in New York City. People were randomly placed in the city and then
set in motion. If they happened to collide with someone then the two people would stop and
talk to each other and then move on after a few seconds. Since it is summer, the sociology
department wants to do some low key additions to this project. When the two people bump
and talk, they also get to know each other thus making a connection. Your colleagues in the
sociology department are interested to see how this network grows over time. Specifically,
they want to see how many people lie within the 6 degrees of separation from one another. It
should be noted that this is all simulated using several nodes on the cluster communicating
using MPI.

(a) (6 points) Write pseudocode that determines how many people in the simulation lie
within six degrees of separation from each other.

Solution:
This should describe some distributed breadth first search. Every person is a graph
vertex. The connections they develop are then used as edges. You can then iterate
through that using the lecture method or the paper matrix method. The key though
is stopping at six levels from any one node. The difference from the total people being
the people who are not within the six degrees of separation.

(b) (2 points) What is the work and span for your proposed solution?

Solution:
Work: O(—M— + —N—) edges and vertices not N Span: O(d ∗ logr(|M |+ |N |)

(c) (2 points) What other aspects of the design might influence performance?

Solution:
This should mainly go into the costs of the alpha and beta communication costs which
are not necessarily included in a basic big O analysis of an algorithm but which will
influence the ov

CSE 6220-O01 Homework 5, Page 14 of 25 Fall 2024

Question 10 (10 points)
Red vs Blue. Consider n balls distributed evenly across p processor nodes, each colored either
RED or BLUE. We want to ensure that each continuous sequence of r balls has at least s BLUE
balls (assume n > r > s).

(a) (8 points) Design a parallel algorithm to check if the condition is true for every continu-
ous sequence of length r.

Solution:

• step a: Create a size n array called A, distributed evenly across all processors. Let
ci be the color of ball i. Assign A[i] as follows:

A[i] =

{
1 if ci = blue

0 if ci = red

Runtime complexity: Computation– O(np)

• step b: Apply parallel prefix sum over A and store the results in a new array, S.

Runtime complexity: Computation–O(np+log p), Communication–O((τ+µ) log p)

• step c: For all i ≤ n − r, send S[i] to the processor holding S[i + r − 1]. Note that
this implies each processor sends at most np total elements. Furthermore, each pro-
cessor sends to at most 2 other processors, so at most 2 rounds of communication
are needed.

Runtime complexity: Communication– O(τ + µnp)

• step d: Create an array T such that–

T [i] =

{
1 if i < r − 1 or S[i]− S[i− r + 1] ≥ s
0 otherwise

• step e: Perform parallel reduction on T using the AND operator. Condition is true
if the final result is 1, false otherwise.

Runtime complexity: Computation–O(np+log p), Communication–O((τ+µ) log p)

(b) (2 points) Analyze your algorithm separately in terms of both work and span complexi-
ties.

Solution:
Based on the runtime complexity of each of the steps above, the final complexity analysis
is bounded by and is as follows:

• Computation– O(np + log p)

• Communication– O((τ + µ) log p+ µnp)

CSE 6220-O01 Homework 5, Page 15 of 25 Fall 2024

Question 11 (10 points)
VeryOP. Let’s start by defining a new reduction operation primitive and calling it op.

Now imagine we have a p processor system where each processor node has an array of size p
stored local to itself. If we perform our reduction operation primitive, op, on our p processor
system, the processor node at the ith rank will have the reduction of all the ith elements of all
the processor nodes’ arrays.

Design an efficient parallel algorithm for this reduction operation primitive and then compute
its computation cost/runtime complexity.

(a) (8 points) Provide your parallel algorithm design.

Solution:
Let the array on each processor be Ai. This problem can be solved in log p iterations as
follows:

• step 1: Divide the p processors into two groups such that P0 to Pp/2−1 belongs to
the left group and Pp/2 to Pp−1 belongs to the right group. (2 points)

• step 2: Every Pi in the right group sends Ai[0, p2 − 1] to Pj in the left group, where
j = i− p

2 . (1 points)

• step 3: Similarly, every Pj in the left group sends Ai[p2 , p − 1] to Pi in the right
group, where i = j + p

2 . (1 points)

• step 4: Then every processor executes and computes the reduction of the received
elements with its own local Ai using the reduction operator, op. (2 points)

• step 5: The left and right groups represent subproblems on p/2 processors using
their respective parts of A(i.e.,Ai[0, p2−1] andAi[p2 , p−1]). Lastly, repeat the above
steps on each group separately until each processor has one element. (2 points)

(b) (2 points) Find the work and span of the algorithm.

Solution:
The run time complexity is given by:

• Computation cost = O(p/2 + p/4 + ...1) = O(p).

(2 points for getting the Computation cost correctly.)

CSE 6220-O01 Homework 5, Page 16 of 25 Fall 2024

Question 12 (10 points)
RANKrank. Let’s start with our parallel SampleSort algorithm.

We intend to feed our algorithm n elements such that all of these elements are distinct from
one another and they are globally in decreasing order with respect to the order of our processor
nodes. Our algorithm is going to utilize p processor nodes and each processor will initially
have n

p elements locally stored in them (assume n is divisible by p).

Our SampleSort is run to sort our input elements in ascending (increasing) order. Now Com-
pute the number of input elements in each processor, after running our algorithm, as a func-
tion of the processor rank (i.e. i).

(a) (10 points) As mentioned, compute the number of input elements per processor (as a
function of/based-on the processor rank/number) and provide detailed steps for doing
so.

Solution:
The steps for finding the number of elements per processor are as follows:

• step 1: First each processor will sort its local array and choose p− 1 local splitters.
These local splitters will be evenly spaced out in the sorted local array at local
indices k · n

p2
− 1 for k from 1 to p − 1. Since sorting the our input list (feed) is

equivalent to reversing it (since they are initially in globally descending/decreasing
order), these splitters have indices n

p − 1 − (k · n
p2
− 1) = n

p − k ·
n
p2

in the original
unsorted local array.

Also the last local splitter has k = p− 1 and has index n
p − (p− 1) · n

p2
= n

p2
in the

original local array, which corresponded to index i · np + n
p2

in the unsorted global
array for processor i.

• step 2: Following the sample sort process, these local splitters are globally sorted,
which amounts to globally reversing the sets of candidate splitters from each pro-
cess. That is, processor 0 will have the p − 1 smallest global splitter candidates
which came from the last processor; the second process will have the next smallest
p− 1 candidates which came from the second to last processor and so on.

• step 3: When sample sort chooses the last candidate splitter on each processor to be
a global splitter, this corresponds to the last local splitter from the opposite process.
I.e., processor j will choose the last local splitter from processor i = p− 1− j to be
a global splitter. This is while the last process does not choose a global splitter, so
the last local splitter from process 0 is never used.

• step 4: Therefore the global splitters occur at global indices i · np + n
p2

in the original
array for i from 1 to p − 1. As mentioned, sorting the global array amounts to
reversing these splitters. This makes the splitter on processor j be at index n− 1−
((p− 1− j) · np + n

p2
) for j from 0 to p− 2. This simplifies to (j + 1) · np −

n
p2
− 1.

• step 5: Processor 0 will end up with all the elements up until the first splitter.
Processor j will end up with all the elements up until the splitter at j−1. Processor
p− 1 will additionally have the elements up to the end of the array.

CSE 6220-O01 Homework 5, Page 17 of 25 Fall 2024

Therefore the number of input elements per processor after the conclusion of our Sample
sort algorithm, as a function of the processor rank (where it’s denoted as i) is given by:

f(i) =


n
p 0 < i < p− 1
n
p −

n
p2

i = 0
n
p + n

p2
i = p− 1

Grading:
In terms of points allocation and grading, following the exact steps outlined in the solu-
tion is definitely not necessary. Getting to the final answer for the number of elements
per processor is what matters for getting the question correct and all the points, un-
less the approach is completely and utterly wrong. Also not getting any of the answers
correct does not mean a 0 for the question– there will be partial credit reflected on the
rubric.
For the final answer the following point allocations stand:

• +4 points –the intermediate processor nodes’ element count.

• +3 points –first node’s element count.

• +3 points –last node’s (processor p− 1) element count.

CSE 6220-O01 Homework 5, Page 18 of 25 Fall 2024

Question 13 (10 points)
Communication Madness. We studied several distributed memory topologies such as the
ring, 2-D mesh, hypercube, and fully connected. Of course in real world supercomputers (like
our PACE cluster), the actual topology is hybrid, complicated, and messy.

Consider a machine with P=1000 nodes, where each a node is a processor on a chiplet of
four CPUs. Within any one chiplet, the four processors can communicate with extremely low
latency and high bandwidth, call it αchip and βchip. However, all the four node chiplets are
connected in a ring network (250 total chiplets) and those inter-chiplet connections have reg-
ular α+ βn cost.

Your task: Outline, in high-level pseudocode, a personalized all-to-all messaging algorithm
that is efficient for this topology.

(a) (6 points) Describe your algorithm using high-level pseudocode. That means, no vari-
able declarations or C syntax; just provide sufficient detail to understand your approach.

Solution:
There are a couple ways to approach, but in the end an efficient solution will split into
two problems: the on-chiplet and then the ring communication. The chiplet is fully-
interconnected with very low cost. Ring all-to-all is discussed in the lectures with a shift
approach. So an approach could be:

point-to-point (effectively instant) on all chiplets
for i = 1 to P/4

shift pass data from node 0->4, 4->8, etc.
point-to-point all within all chiplets

The key fact is P/4 rounds.
Note: Attempts to use broadcast or scatter are doomed. Nodes can’t hold 1000x their
base data, and it result in horrible congestion on a ring,

(b) (4 points) Analyze the efficiency of your algorithm in terms of alpha and beta model, but
using αchip and βchip to note intra-chiplet communications. Remember that:
βchip << αchip << β << α
Hint: you can just write AlphaChip, BetaChip, Alpha etc. in Canvas as text.

Solution:
The base communications as described in book and lecture is O(αP + βnP). Then add
a constant times αchip + βchip if point to point (can use tree or other).

CSE 6220-O01 Homework 5, Page 19 of 25 Fall 2024

Question 14 (10 points)
Projection. You have learned about the 2D distributed Matrix Multiplication algorithm in this
class. In practice, instead of computing and forming new matrices explicitly, the matrix as an
operator could be applied to data in multiple steps.

Consider the operation AATx, where matrix A is of size n×k, and x a vector of size n, and AT

denotes A’s transpose.

In the real world n >> k so we will assume k is a constant, and the problem size is n.

(a) (1 point) What is the optimal amount of floating point operations required to complete
this computation in serial? Give the precise number in terms of n and k, do not use big-O
notation.

Solution:
4nk − n− k

(b) (6 points) Now we have p distributed processors and p is a perfect square. Describe a
parallel algorithm to compute AATx.
You may arrange p processors in an arbitrary grid/topology if you would like, and par-
tition/store A in the processes in any way you want. Do not sweat about optimality,
but clearly state the partition of matrix, process network layout, and use communication
primitives like send, recv, broadcast, etc. you learned from MPI.
Analyze runtime of your algorithm T (n, p) with respect to problem size n and available
workers p.

Solution:
No standard solution, focus on correctness of students’ algorithm and runtime analysis,
as long as the algorithm itself is reasonably parallel, and all presumptions clearly stated.

(c) (3 points) Now suppose we have an algorithm that runs in T (n, p) = Θ(nkp + k log p),
what is the largest value of p that maintains the optimal Θ(1) efficiency?

Solution:
T (n,1)
pT (n,p) = Θ(1)⇒ Θ(nk)

Θ(nk+kp log p) = Θ(1)⇒ Θ(p log p) ∈ Θ(n)⇒ p ∈ Θ(n
logn)

CSE 6220-O01 Homework 5, Page 20 of 25 Fall 2024

Question 15 (10 points)
SortAndSolve. This question has two parts. The first is meant to serve as motivation and help
for the second.

(a) (4 points) Show the steps for bitonic sorting the following 8-elements in non-increasing
order. You can for example use lines to denote comparison operations- but there are no
hard requirements as long as the correct comparisons are mentioned. You can also for
example label the comparison operations as ↑ or ↓ where the direction of your arrow
indicates the destination of the smaller element (or bigger element but make sure to men-
tion if not following the default assignment). Illustrate how the following input is sorted
using a text diagram:

(10, 14, 9, 6, 17, 3, 8, 4)

NOTE: Here’s an example of what to write and what to mention (position of the compar-
isons in this example are totally random) given the constraints of Canvas.
Step 0: 5, 6, 9, 23, 1, 2

Step 1: 5, 23, 9, 6, 2, 1 (23 compared with 6, 2 with 1) (or you can use index starting with 0)
Step 2: 23, 5, 9, 6, 2, 1 (23 compared with 5)

Solution:

(b) (4 points) Now provide an efficient parallel algorithm to merge two sorted sequences
of lengths m and n, respectively. You may assume that the input is an array of length
m + n with one sequence followed by the other, distributed across processors such that
each processor has a sub-list of size m+n

p .

Solution:
Without any loss of generality, we can assume that m >= n. Reversing the second
sorted sequence results in a bitonic sequence of length m + n. To reverse the second
sorted sequence, each processor need to communicate with at most 2 processors and the
communication time will be O(τ + µ(m+ n)/p).

(c) (2 points) What is the work and span of your algorithm? (You may assume the use of any
permutation style communication, not necessarily hyper-cubic for example.)

Solution:
Bitonic merging of a sequence of length m + n using p processors takes O((τ + µ(m +
n)/p)logp) communication time (span) and O((n+m)/plogp) computation time (work).

CSE 6220-O01 Homework 5, Page 21 of 25 Fall 2024

Question 16 (10 points)
Parallel Distributed Scan. As we have seen, the general running time TP (n) for a parallel
scan is O(nP + log2 P) if we have fewer than O(n) processors. This algorithm exhibits strong
scalability - whenever n

P ≥ log2 P , the speedup is linear in P . However, there are practical
limitations to the number of processors we can fit on a single node. If we want to get a 500x
or 1000x speedup, we have to expand to more than one node to do so. How does parallel
distributed scan perform on multiple nodes?

(a) (4 points) Design a parallel add-scan algorithm to be run on a system with Pd distributed
nodes and Pl processors local to each node. The system is connected via a 2D grid inter-
connect. Do not provide pseudocode.

Solution:
We can augment the addScan procedure from lecture as follows. First, on each node, we
locally partition the data over the Pl processors. Each processor does a linear scan of its
data. Next, each node performs the recursive scan, accumulating partial sums until we
hit the base case. At this point, one processor on each node contains the accumulated
sum, σi of all its local data elements.
Next, we perform a scan across the Pd nodes. At the end of this scan, each node will
have the +-scan, Si, up to and including itself. Si − σi is the prefix sum of the values in
the nodes prior to node i. We save this sum for later, and in the meantime we proceed
back up the recursive stack on each node, applying the second half of the local scan.
Lastly, in parallel, each processor applies the node-wise prefix sum to its partition of the
local data.

(b) (3 points) What are the computation and communication times of your algorithm? Pro-
vide your answers in terms of n, Pd, Pl, and, where appropriate, α and β.

Solution:
On each node, the addScan takes time TPl

(n
Pd

) = O(n
PdPl

+ log2 Pl). The node-wise scan
takes timeO(log2 Pd), so the time taken overall is Tcomp(n, Pd, Pl) = τ ·O(n

PdPl
+log2 Pd+

log2 Pl).
Communication only happens during the node-wise scan in the middle. Each round,
half of the nodes send a message to, and later receive a message from, the other half
of the nodes. Then the overall maximum number of messages sent (only two nodes
make it to the final round) is 2 logPd. Similarly, each of these messages is a single num-
ber, so the number of words sent is 2 logPd. The overall communication time is then
Tcomm(n, Pd, Pl) = 2α logPd + 2β logPd.

(c) (2 points) What is the isoefficiency function of your algorithm? How does it compare to
scalability of the PRAM add-scan algorithm mentioned above? For what relationship(s)
between Pd and Pl does it approach the PRAM add-scan? Helpful hint: when computing
efficiency from speedup, note that your system has Pd · Pl total processors.

Solution:
Since we don’t know whether the communication or computation time takes longer (the
distributed add-scan can be overlapped with the second half of the local add-scan which
proceeds back up the local recursive stacks), the overall running time is the initial linear

CSE 6220-O01 Homework 5, Page 22 of 25 Fall 2024

scan, O
(

n
PdPl

)
, the max of the communication time and the parallel and distributed

scans O
(
max

(
2(α+ β) logPd, log2 Pd + log2 Pl

))
, and the final parfor application of the

prefix sum O
(

n
PdPl

)
. The parallel speedup is then given by

S(n, Pd, Pl) =
n

n
PdPl

+ max
(
2(α+ β) logPd, log2 Pd + log2 Pl

)
This simplifies to

S(n, Pd, Pl) =
1

1
PdPl

+ max
(

2(α+β) logPd

n , log2 Pd+log2 Pl
n

)
The efficiency, S(n, Pd, Pl)/PdPl, is then

E(n, Pd, Pl) =
1

1 + max
(

2PdPl(α+β) logPd

n , PdPl(log2 Pd+log2 Pl)
n

)
In order to make each term in the denominator constant, we must have that

n = Ω(PdPl logPd)

and
n = Ω(PdPl(log2 Pd + log2 Pl))

respectively. Since PdPl(log2 Pd + log2 Pl) = Ω(PdPl logPd), then our isoefficiency func-
tion is n = Ω(PdPl(log2 Pd + log2 Pl).
This is not too far off from the original scalability of PRAM addScan, which is n =
Ω(P log2 P). Indeed, if Pl >> Pd, then we see the isoefficiency starts to look closer to the
original PRAM - which makes sense, given that when Pl >> Pd, the system looks more
and more like a PRAM in the first place. As Pd starts to dominate, then we see a slightly
less advantageous relationship form, as the communication time begins to dominate the
other smaller parallel scan factors. This also makes sense, as Pd >> Pl starts to look like
a parallel scan over d nodes in a network.

(d) (1 point) What if your algorithm needed to be run on a linear network? How would it
change?

Solution:
Since a linear network can be logically embedded in a 2D grid, the algorithm - and its
communication time - does not change.

CSE 6220-O01 Homework 5, Page 23 of 25 Fall 2024

Question 17 (10 points)
BeastMode Returns! You’re working for a big social networking company, Squawker. It has an
enormous dataset spread across a thousand processor nodes consisting of unordered messages
of the form: keyword, squawk content. Example:

”#OMSCS”,”HPC is the best class!”
”#MOVIES”,”I wish Indiana Jones stopped at three”
”#ELON”,”I hope he doesn’t buy Squawker”
”#OMSCS”,”I really hated CN”

In this example, ”#OMSCS” is the most common keyword.

You have been told to efficiently find the most common keywords(s) distributed across the
huge dataset over P nodes. There is only one keyword per message, but there are at least 10
million different keywords in use. There may turn out to be more than one ”most common
value”.

(a) (6 points) Using pseudocode and referencing any MPI functions you wish, describe an
efficient solution. The output should be a list of one or more most common keywords.

Solution:
A key takeaway (pun intended) is that you don’t need to sort and communicate every-
thing – just the keywords with counts. That takes the problem from enormous to just
being a distributed sort of 10M elements – not an insurmountable problem.
A most-efficient solution will collect keyword counts locally, then do bucketsort or sam-
plesort (like Lab3) to distribute keywords with their counts across the P nodes (accumu-
lating the counts).
Then local ”scan” within each node to find the most common value(s) This can be a
MPI Gather of each node’s most common value(s), which can be scanned on the root.
An alternative solution is to do a tree-like accumulation of keyword/accounts, rec-
ognizing that there may be different numbers of keywords from each node. It’s not
MPI Reduce!
Non-workable: accumulating all keywords on root (P * #keywords is too much data).

(b) (4 points) Assuming a fully-connected network, analyze the communications complexity
of your approach in terms of α and β.

Solution:
Communications is dominated by the sort, but for size k data, [number #/size of key-
words] (k is much smaller than n, and it is important to make a distinction). β term does
not depend on n (the overall problem size). There are a couple variations on how this
can be done, but a good answer is α ∗ P + β(P ∗ k)

CSE 6220-O01 Homework 5, Page 24 of 25 Fall 2024

Figure 2: Heat Diffusion Calculation Setup - U(x, y) represents temperature of element x, y

Question 18 (10 points)
Analyzing a distributed memory problem. Let us consider the problem of simulating heat
diffusion on a 2-D surface of N elements in each dimension. Lets say cx (constant) is the size
of each element in x-dimension and cy (constant) is the size of the element in y-dimension.
The heat equation calculates the change in temperature over a period of time. The initial tem-
perature and boundaries are given. Lets assume that t1 & t2 are two consecutive time steps
having temperatures U1 & U2. The resulting heat equation is given as:

U2x,y = U1x,y + cx ∗ (U1x+1,y + U1x−1,y − 2 ∗ U1x,y) + cy ∗ (U1x,y+1 + U1x,y−1 − 2 ∗ U1x,y)

The calculation of temperature of an element is dependent upon the neighbor element tem-
perature values at the prior time step.

Let us consider analyzing a distributed memory algorithm to solve this problem.

(a) (2 points) Lets start with partitioning the data (elements of the 2-D surface) across the
processors of the distributed memory setup. Assuming that the size of the element is 1
(cx, cy are both 1) and there are N elements in each dimension (x & y) and there are P
processors to do the heat diffusion simulation, can you provide the number of elements
in each processor in a simple 1-D and 2-D partitioning of data?

Solution:
1-D: P elements of size N

P ∗N
2-D: P elements of size N√

P
∗ N√

P

(b) (5 points) Assuming the same setup as part (a), Can you come up with an estimate of
the computation and communication times for one time step of temperature calculation
of all N ∗N elements for both the partitioning schemes? Explain the size of the commu-
nication block that you are using for each partitioning scheme.
Hint: You need to consider the number of elements that have to communicated per
process to other processes given the partitioning scheme and the heat diffusion equa-
tion

CSE 6220-O01 Homework 5, Page 25 of 25 Fall 2024

Solution:
Let’s ignore the boundary elements because they won’t communicate with all neighbors
and hence won’t dominate the communication times. Say, a & b are the startup time
and reverse bandwidth respectively, For the 1-D partitioning, we will send N element
blocks to the neighbor (either side). So, the comm time will be 2.(a + b.N). For the 2-D
partitioning, N√

P
block needs to be communicated to each of 4 blocks. So the total comm

time will be 4.(a+b. N√
P

). The computation time will be the same for both the partitioning
scheme which is basicaly the number of elements per process assuming constant times
for division and multiplications: N

2

P

(c) (3 points) What will be the isoefficiency of the 1-D partitioning scheme and what can
you conclude from it?
Hint: In the serial solution of the heat diffusion equation stated above, we will just
have two outer loops - one across x axis and one across y - axis

Solution:
Isoefficiency is 1D Speedup/P. n = Ω(p). So n has to grow as much as p for the algorithm
to remain scalable.

