
CSE 6220-O01: Intro to HPC Homework 5 Nov 25–Dec 01

This homework is ungraded/optional and meant purely to help you be better prepared for the
exams. Feel free to collaborate with your fellow students in the respective Ed Discussions post.

Question 1 (10 points)
Parallel Efficiency You have an algorithm, FOO, that you want to run on a distributed memory
system. The algorithm takes 2n3/2τ time on a sequential processor, where τ is the time for a
single computation. The distributed version is written for p processors and is listed below:

Algorithm: Distributed-FOO

1 for i in 1 . . .
√
p:

2 Sequential−Foo(. . .)
3 MPI Communicate(. . .)

The communication step takes time α + n
pβ where α is the latency and β is the inverse band-

width of the system. Data is evenly distributed across processors.

(a) (2 points) Is this algorithm work optimal? Explain.

(b) (2 points) What is the speedup of this algorithm on p processors?

(c) (3 points) What is the parallel efficiency of this algorithm?

(d) (3 points) What is the isoefficiency function for this algorithm? (Remember: the isoef-
ficiency function is a lower bound on how fast n must grow as a function of p to keep
constant efficiency). Explain your answer.

CSE 6220-O01 Homework 5, Page 2 of 18 Fall 2024

Question 2 (10 points)
Bumper cars. Researchers from the Sociology department are looking for some help doing a
simulation. They want to simulate a large city with millions of people. All the people in the
city are to ignore one another unless they bump into someone. If they bump into someone,
they will then be polite and exchange pleasantries for a minute before resuming. If someone
bumps into a conversation then it ends and begins with the two people and the third continues
on in a random direction. The researchers want to model this and see how the crowd reacts
over time. The modeled city is similar to New York with millions of people spread throughout
the city to start.

(a) (4 points) You are tasked with implementing this on the cluster. What sort of software
frameworks (OpenMP, MPI or CUDA) from this class would you use for this project? Be
specific about why you want to use this in your design as opposed to something else. You
might want to think about Part B before answering this.

(b) (6 points) Write pseudo code that models how you would implement this simulation if
this was a real life task. Many things are going on here that should be considered. Think
about how the data and workload will be distributed. This may then influence how you
design hit detection to work. Keep in mind that one node may have more people to
simulate than another, so how will time slices be handled?

CSE 6220-O01 Homework 5, Page 3 of 18 Fall 2024

Question 3 (10 points)
Polynomial Evaluation With Horner’s Rule

Evaluating a degree n polynomial is the task of solving

P (x) = an−1 ∗ xn−1 + · · ·+ a2 ∗ x2 + a1 ∗ x+ a0

for a given list of n coefficients: A = [an−1, an−2, · · · , a1, a0] and some specific input value of
x.

The iterative method for evaluating is a serial for loop over all the coefficients that runs in
O(n) time.

serial polynomial eval in python
def poly_eval(A : List[], x : int):

x_to_power_degree = 1
value = 0
for coeff in A:

value += x_to_power_degree * coeff
x_to_power_degree *= x

return value

As is evident, this method runs in Θ(n) time and is not intended to scale to multiple proces-
sors.

Horner’s rule however, re-interprets the evaluating a polynomial is as follows:

P (x) = a0 + x(a1 + x(a2 + · · ·x(an−1)))

This way of ”rephrasing” polynomial evaluation looking at the computation differently allows
us to parallelize the evaluation to an arbitrary number of processors.

Construct a distributed memory parallel algorithm for P number of processors (that is, all
communication between any two ranks must be explicit). Assume that number of coefficients
N >> P and that each processor is ranked starting at zero through P − 1. Further assume
that each rank contains its block of coefficients at the start of the algorithm, i.e. rank 0 contains
coefficients A[0 : N/P], rank 1 contains coefficients A[N/P : 2N/P] and that N is divisible by
P.

Analyze the asymptotic complexity of your parallel algorithm. Please express your solution
as pseudocode or short phrases for each step, do not write actual code for your algorithm.

CSE 6220-O01 Homework 5, Page 4 of 18 Fall 2024

Question 4 (10 points)
Cartesian Reduce

You are tasked with implementing a new kind of MPI reduce, called an MPI CartesianReduce.
This reduce is only defined for processors arranged in a d-dimensional grid, and is defined
component-wise as follows:

B[i1, i2, ..., id]←− A[i1, i2, ..., id]

+

n∑
k=1,k 6=i1

A[k, i2, ..., id]

+
n∑

k=1,k 6=i2

A[i1, k, ..., id]

+ ...

+
n∑

k=1,k 6=id

A[i1, i2, ..., k]

In words, this means that each processor ends up with the sum of the elements that vary in
exactly one or zero indices. Let’s take a look at an example in two dimensions:

1 1 1 1

1 2 3 1

1 4 5 1

1 1 1 1

7 11 13 7

10 13 14 10

14 15 16 14

7 11 13 7

We see that each processor ends up with the sum of all of the elements in its row, and all of
the elements in its column.

(a) (4 points) Design a distributed memory algorithm to compute the MPI CartesianReduce
for a d-dimensional torus, where each dimension has length p, and each processor needs
to send nwords. Pseudo-code is not required, but you provide enough detail so that your
answer to part (b) is clear.

(b) (4 points) What is the time spent on communication, T (n, p, d)? Explain.

(c) (2 points) Your friend has designed a new architecture that will allow each node to re-
ceive d messages and send d messages at once. How can you use their architecture to
write a faster version of this algorithm? How does the communication time change?

CSE 6220-O01 Homework 5, Page 5 of 18 Fall 2024

Question 5 (10 points)
Uh oh...something is wrong. One of the nice features of MPI is that it includes a lot of prim-
itives that we can use. But what happens if you find out they aren’t working correctly? In
particular, suppose you’re trying to implement an algorithm and find out that MPI Barrier()
no longer works.

For this problem, assuming the following pieces of information.

1. The number of nodes is P .

2. The communicator is comm.

3. The rank of a processor is rank.

(a) (6 points) Give detailed pseudocode for your own MPI Barrier() using point-to-point op-
erations. Your pseudocode should be reasonably detailed, that is, close to being “com-
pileable.”

(b) (2 points) What do you think the asymptotic lower bound is?

(c) (2 points) Why does your algorithm work and reach that bound?

CSE 6220-O01 Homework 5, Page 6 of 18 Fall 2024

Question 6 (10 points)
Dense Matrix Algorithms

(a) (5 points) Consider the matrix-vector multiplication operation, y = Ax, where A is an
n×nmatrix and x and y are n×1 vectors. Each output y vector element may be computed
as y[i] =

∑n
j=0A[i, j] · x[j]

Suppose that the matrix is partitioned with 1D column-wise partitioning, such that each
processor stores n

p complete columns of the matrix A and has matching n
p elements of

the vectors x and y, i.e., if a processor holds column j (i.e., A[∗, j]), then it also owns x[j]
and y[j]. Design an efficient distributed memory parallel algorithm to compute matrix-
vector multiplication in parallel. Analyze the run-time of this algorithm and specify the
computation and communication time.

(b) (5 points) Let A be an n×n matrix. The transpose of A, denoted AT is defined as AT [i, j]
= A[j, i]. Design a parallel algorithm to compute AT from A using an n × n virtual torus
topology. During the execution of the algorithm, each processor can hold at most a con-
stant number of matrix elements at a time (can be greater than one). Specify the total
runtime for your algorithm.

CSE 6220-O01 Homework 5, Page 7 of 18 Fall 2024

0 1 2 3 4 5

1 2 3 4 5 6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

Figure 1: Results of a breadth-first search on a 2-D grid graph. The source is the upper-leftmost
vertex. Each vertex is labeled by its level as computed by the BFS.

Question 7 (10 points)
BFS cache analysis. Suppose you run a sequential breadth-first search (BFS) on a two-dimensional
(2-D) grid graph with n vertices. An example appears in fig. 1, where the n = 36 vertices are
laid out on a 2-D grid with regular spacing, and each vertex is connected by edges to its north,
south, east, and west neighbors. (Though the example is square, do not assume a square grid
graph in this problem.) If you start from the upper-leftmost vertex and label each unseen
vertex by its level during the search, you will get the labels shown in fig. 1.

In the following exercises, you will analyze the cache behavior of BFS on grid graphs for a
machine with a two-level memory hierarchy. Let Z be the size of the cache and L be the line
size. Furthermore, assume that the vertices in a row are laid out consecutively in memory, and
ignore the storage cost of edges. That is, suppose we don’t need to store edges at all and that
you can determine location in memory of any neighbor of a vertex in O

(
1
)

time.

(a) (5 points) For what sizes n would you expect good cache behavior? “Good” means no
thrashing of cache lines due to insufficient capacity. Do not assume anything about the
order in which the algorithm visits the neighbors of a vertex. Explain your reasoning.

(b) (5 points) Suppose the graph is, instead, a three-dimensional (3-D) grid graph, again
with n vertices. For what value of n would you expect to see cache thrashing due to a
lack of capacity?

CSE 6220-O01 Homework 5, Page 8 of 18 Fall 2024

Question 8 (10 points)
Distributed 3D fast Fourier transforms (FFTs). Consider a supercomputer that can execute up
to Rmax operations per unit time. (That is, an embarrassingly parallel program that performs
no communication and moves no data through the memory hierarchy will execute at this
rate.) Further suppose that the architecture of this machine is a distributed memory network
of P nodes connected by a 3D torus. Let the time to send a message of size m words between
any two nodes, in the absence of congestion, be m/βlink, where βlink is the bandwidth (words
per unit time) of a network link. (That is, we simplify our usual (α, β) model by ignoring any
latency term, α.) Within each node, suppose there is a two-level memory hierarchy with a fast
memory of size Z and main memory bandwidth of βmem words per unit time. Lastly, assume
that the node itself can execute up to R0 operations per unit time, so that its balance (within
the node) is B0 ≡ R0

βmem
ops per word.

Suppose you wish to compute a 3D FFT. Here are its main performance characteristics.

• Let n3 denote the size of the input. The output will be of the same size.

• The total work (e.g., arithmetic operations) is O
(
n3 log n

)
.

• Let the parallel execution time be T ≥ max{Tcomp, Tmem, Tnet}, where Tcomp is the time to
perform just the arithmetic operations; Tmem = Tmem(n;Z, βmem) is the time spent on lo-
cal (intranode) communication between slow and fast memory; and Tnet = Tnet(n;βlink, P)
is the time spent on network communication. This equation says the running time is,
in the best case, the largest of these three components, assuming arithmetic, local data
movement, and network communication can all be completely overlapped.

• It is possible to show that Tmem = O
(n3 log n

Pβmem logZ

)
and Tnet = O

(n3

P 2/3βlink

)
.

With this background, answer the following questions.

(a) (1 point) Assume the arithmetic work is perfectly parallelizable. Calculate Tcomp, in a
big-O sense.

(b) (2 points) Next, show that Tmem = O
(B0

logZ
· Tcomp

)
.

(c) (2 points) Define “network node balance” for a 3D FFT as Bnet ≡
R

2/3
0

βlink
. Ignoring the 2/3

exponent for the moment, briefly explain what this quantity tells you about a system.

(d) (2 points) Derive an expression for Tnet in terms of Bnet.

(e) (3 points) Assume that communication dominates, i.e., Tcomp � Tmem and Tcomp � Tnet
for most supercomputers you can build from today’s parts. Now suppose you have a
choice of two supercomputers with the same Rmax. One uses high-end server-grade pro-
cessors and the other uses processors more commonly found in mobile phones. Which
system is likely to be faster, and why?

CSE 6220-O01 Homework 5, Page 9 of 18 Fall 2024

Question 9 (10 points)
Six Degrees of HPC. Last semester, you worked closely with the sociology department to
model some behavior in New York City. People were randomly placed in the city and then
set in motion. If they happened to collide with someone then the two people would stop and
talk to each other and then move on after a few seconds. Since it is summer, the sociology
department wants to do some low key additions to this project. When the two people bump
and talk, they also get to know each other thus making a connection. Your colleagues in the
sociology department are interested to see how this network grows over time. Specifically,
they want to see how many people lie within the 6 degrees of separation from one another. It
should be noted that this is all simulated using several nodes on the cluster communicating
using MPI.

(a) (6 points) Write pseudocode that determines how many people in the simulation lie
within six degrees of separation from each other.

(b) (2 points) What is the work and span for your proposed solution?

(c) (2 points) What other aspects of the design might influence performance?

CSE 6220-O01 Homework 5, Page 10 of 18 Fall 2024

Question 10 (10 points)
Red vs Blue. Consider n balls distributed evenly across p processor nodes, each colored either
RED or BLUE. We want to ensure that each continuous sequence of r balls has at least s BLUE
balls (assume n > r > s).

(a) (8 points) Design a parallel algorithm to check if the condition is true for every continu-
ous sequence of length r.

(b) (2 points) Analyze your algorithm separately in terms of both work and span complexi-
ties.

CSE 6220-O01 Homework 5, Page 11 of 18 Fall 2024

Question 11 (10 points)
VeryOP. Let’s start by defining a new reduction operation primitive and calling it op.

Now imagine we have a p processor system where each processor node has an array of size p
stored local to itself. If we perform our reduction operation primitive, op, on our p processor
system, the processor node at the ith rank will have the reduction of all the ith elements of all
the processor nodes’ arrays.

Design an efficient parallel algorithm for this reduction operation primitive and then compute
its computation cost/runtime complexity.

(a) (8 points) Provide your parallel algorithm design.

(b) (2 points) Find the work and span of the algorithm.

CSE 6220-O01 Homework 5, Page 12 of 18 Fall 2024

Question 12 (10 points)
RANKrank. Let’s start with our parallel SampleSort algorithm.

We intend to feed our algorithm n elements such that all of these elements are distinct from
one another and they are globally in decreasing order with respect to the order of our processor
nodes. Our algorithm is going to utilize p processor nodes and each processor will initially
have n

p elements locally stored in them (assume n is divisible by p).

Our SampleSort is run to sort our input elements in ascending (increasing) order. Now Com-
pute the number of input elements in each processor, after running our algorithm, as a func-
tion of the processor rank (i.e. i).

(a) (10 points) As mentioned, compute the number of input elements per processor (as a
function of/based-on the processor rank/number) and provide detailed steps for doing
so.

CSE 6220-O01 Homework 5, Page 13 of 18 Fall 2024

Question 13 (10 points)
Communication Madness. We studied several distributed memory topologies such as the
ring, 2-D mesh, hypercube, and fully connected. Of course in real world supercomputers (like
our PACE cluster), the actual topology is hybrid, complicated, and messy.

Consider a machine with P=1000 nodes, where each a node is a processor on a chiplet of
four CPUs. Within any one chiplet, the four processors can communicate with extremely low
latency and high bandwidth, call it αchip and βchip. However, all the four node chiplets are
connected in a ring network (250 total chiplets) and those inter-chiplet connections have reg-
ular α+ βn cost.

Your task: Outline, in high-level pseudocode, a personalized all-to-all messaging algorithm
that is efficient for this topology.

(a) (6 points) Describe your algorithm using high-level pseudocode. That means, no vari-
able declarations or C syntax; just provide sufficient detail to understand your approach.

(b) (4 points) Analyze the efficiency of your algorithm in terms of alpha and beta model, but
using αchip and βchip to note intra-chiplet communications. Remember that:
βchip << αchip << β << α
Hint: you can just write AlphaChip, BetaChip, Alpha etc. in Canvas as text.

CSE 6220-O01 Homework 5, Page 14 of 18 Fall 2024

Question 14 (10 points)
Projection. You have learned about the 2D distributed Matrix Multiplication algorithm in this
class. In practice, instead of computing and forming new matrices explicitly, the matrix as an
operator could be applied to data in multiple steps.

Consider the operation AATx, where matrix A is of size n×k, and x a vector of size n, and AT

denotes A’s transpose.

In the real world n >> k so we will assume k is a constant, and the problem size is n.

(a) (1 point) What is the optimal amount of floating point operations required to complete
this computation in serial? Give the precise number in terms of n and k, do not use big-O
notation.

(b) (6 points) Now we have p distributed processors and p is a perfect square. Describe a
parallel algorithm to compute AATx.
You may arrange p processors in an arbitrary grid/topology if you would like, and par-
tition/store A in the processes in any way you want. Do not sweat about optimality,
but clearly state the partition of matrix, process network layout, and use communication
primitives like send, recv, broadcast, etc. you learned from MPI.
Analyze runtime of your algorithm T (n, p) with respect to problem size n and available
workers p.

(c) (3 points) Now suppose we have an algorithm that runs in T (n, p) = Θ(nkp + k log p),
what is the largest value of p that maintains the optimal Θ(1) efficiency?

CSE 6220-O01 Homework 5, Page 15 of 18 Fall 2024

Question 15 (10 points)
SortAndSolve. This question has two parts. The first is meant to serve as motivation and help
for the second.

(a) (4 points) Show the steps for bitonic sorting the following 8-elements in non-increasing
order. You can for example use lines to denote comparison operations- but there are no
hard requirements as long as the correct comparisons are mentioned. You can also for
example label the comparison operations as ↑ or ↓ where the direction of your arrow
indicates the destination of the smaller element (or bigger element but make sure to men-
tion if not following the default assignment). Illustrate how the following input is sorted
using a text diagram:

(10, 14, 9, 6, 17, 3, 8, 4)

NOTE: Here’s an example of what to write and what to mention (position of the compar-
isons in this example are totally random) given the constraints of Canvas.
Step 0: 5, 6, 9, 23, 1, 2

Step 1: 5, 23, 9, 6, 2, 1 (23 compared with 6, 2 with 1) (or you can use index starting with 0)
Step 2: 23, 5, 9, 6, 2, 1 (23 compared with 5)

(b) (4 points) Now provide an efficient parallel algorithm to merge two sorted sequences
of lengths m and n, respectively. You may assume that the input is an array of length
m + n with one sequence followed by the other, distributed across processors such that
each processor has a sub-list of size m+n

p .

(c) (2 points) What is the work and span of your algorithm? (You may assume the use of any
permutation style communication, not necessarily hyper-cubic for example.)

CSE 6220-O01 Homework 5, Page 16 of 18 Fall 2024

Question 16 (10 points)
Parallel Distributed Scan. As we have seen, the general running time TP (n) for a parallel
scan is O(nP + log2 P) if we have fewer than O(n) processors. This algorithm exhibits strong
scalability - whenever n

P ≥ log2 P , the speedup is linear in P . However, there are practical
limitations to the number of processors we can fit on a single node. If we want to get a 500x
or 1000x speedup, we have to expand to more than one node to do so. How does parallel
distributed scan perform on multiple nodes?

(a) (4 points) Design a parallel add-scan algorithm to be run on a system with Pd distributed
nodes and Pl processors local to each node. The system is connected via a 2D grid inter-
connect. Do not provide pseudocode.

(b) (3 points) What are the computation and communication times of your algorithm? Pro-
vide your answers in terms of n, Pd, Pl, and, where appropriate, α and β.

(c) (2 points) What is the isoefficiency function of your algorithm? How does it compare to
scalability of the PRAM add-scan algorithm mentioned above? For what relationship(s)
between Pd and Pl does it approach the PRAM add-scan? Helpful hint: when computing
efficiency from speedup, note that your system has Pd · Pl total processors.

(d) (1 point) What if your algorithm needed to be run on a linear network? How would it
change?

CSE 6220-O01 Homework 5, Page 17 of 18 Fall 2024

Question 17 (10 points)
BeastMode Returns! You’re working for a big social networking company, Squawker. It has an
enormous dataset spread across a thousand processor nodes consisting of unordered messages
of the form: keyword, squawk content. Example:

”#OMSCS”,”HPC is the best class!”
”#MOVIES”,”I wish Indiana Jones stopped at three”
”#ELON”,”I hope he doesn’t buy Squawker”
”#OMSCS”,”I really hated CN”

In this example, ”#OMSCS” is the most common keyword.

You have been told to efficiently find the most common keywords(s) distributed across the
huge dataset over P nodes. There is only one keyword per message, but there are at least 10
million different keywords in use. There may turn out to be more than one ”most common
value”.

(a) (6 points) Using pseudocode and referencing any MPI functions you wish, describe an
efficient solution. The output should be a list of one or more most common keywords.

(b) (4 points) Assuming a fully-connected network, analyze the communications complexity
of your approach in terms of α and β.

CSE 6220-O01 Homework 5, Page 18 of 18 Fall 2024

Figure 2: Heat Diffusion Calculation Setup - U(x, y) represents temperature of element x, y

Question 18 (10 points)
Analyzing a distributed memory problem. Let us consider the problem of simulating heat
diffusion on a 2-D surface of N elements in each dimension. Lets say cx (constant) is the size
of each element in x-dimension and cy (constant) is the size of the element in y-dimension.
The heat equation calculates the change in temperature over a period of time. The initial tem-
perature and boundaries are given. Lets assume that t1 & t2 are two consecutive time steps
having temperatures U1 & U2. The resulting heat equation is given as:

U2x,y = U1x,y + cx ∗ (U1x+1,y + U1x−1,y − 2 ∗ U1x,y) + cy ∗ (U1x,y+1 + U1x,y−1 − 2 ∗ U1x,y)

The calculation of temperature of an element is dependent upon the neighbor element tem-
perature values at the prior time step.

Let us consider analyzing a distributed memory algorithm to solve this problem.

(a) (2 points) Lets start with partitioning the data (elements of the 2-D surface) across the
processors of the distributed memory setup. Assuming that the size of the element is 1
(cx, cy are both 1) and there are N elements in each dimension (x & y) and there are P
processors to do the heat diffusion simulation, can you provide the number of elements
in each processor in a simple 1-D and 2-D partitioning of data?

(b) (5 points) Assuming the same setup as part (a), Can you come up with an estimate of
the computation and communication times for one time step of temperature calculation
of all N ∗N elements for both the partitioning schemes? Explain the size of the commu-
nication block that you are using for each partitioning scheme.
Hint: You need to consider the number of elements that have to communicated per
process to other processes given the partitioning scheme and the heat diffusion equa-
tion

(c) (3 points) What will be the isoefficiency of the 1-D partitioning scheme and what can
you conclude from it?
Hint: In the serial solution of the heat diffusion equation stated above, we will just
have two outer loops - one across x axis and one across y - axis

