Reaves.dev

v0.1.0

built using

Phoenix v1.7.20

Max Flow Min Cut

Stephen M. Reaves

::

2025-02-25

Proving that the maximum flow is equal to the minimum st-cut

Summary

We prove that we can partition the graph by creating a cut that divides s and t, and the minimum such cut is the same size of the maximum flow from the Ford-Fulkerson. To construct such a partition, we simply include everything reachable from s in L, and everything else in R, using the residual graph from Ford-Fulkerson.

Contents

Recap of Ford-Fulkerson Algorithm

Input: flow network

  • directed graph G=(V,E) with s,t in V and capacities > 0

Output: flow f f^* of max size

  • size(f)=fout(s)=fin(t) \text{size}(f) = f^{out}(s) = f^{in}(t)

When did Ford-Fulkerson stop?

  • When there was no augmenting path in residual Gf G^{f^*}

Lemma: For a flow f f^* , if no augmenting path in Gf G^{f^} , then f f^ is a max-flow

It takes O(n+m) time to check if f f^* is a max-flow. We simply run BFS on it.

Min-Cut Problem

A cut is a partition of V=LR V = L \bigcup R

An st-cut is a cut where sL,tR s \in L, t \in R

capacity(L,R)=vwE:vL,wRcvw \text{capacity}(L,R) = \displaystyle\sum_{\overrightarrow{vw} \in E: v \in L, w \in R} c_{vw} = capacity from L to R

Input: Flow network

Output: st-cut with minimum capacity

Max-Flow Min-st-cut

Size of max-flow = min capacity of st-cut
Theorem

Proof: max-flow \le min st-cut & max-flow \ge min st-cut

for any flow f and st-cut(L,R), size(f) \le capacity(L,R)

The intution is that the flow is going from s to t, so at some point it needs to go from L to R

size(f)=fout(L)fin(L) size(f) = f^{out}(L) - f^{in}(L)

fout(L)fin(L)=vwE:vL,wRfvw f^{out}(L) - f^{in}(L) = \phantom{-} \displaystyle\sum_{\overrightarrow{vw} \in E : v \in L, w \in R} f_{vw}

fout(L)fin(L)=wvE:vL,wRfwv \phantom{f^{out}(L) - f^{in}(L) =} - \displaystyle\sum_{\overrightarrow{wv} \in E : v \in L, w \in R} f_{wv}

fout(L)fin(L)=+wvE:vL,wLfvw \phantom{f^{out}(L) - f^{in}(L) =}+ \displaystyle\sum_{\overrightarrow{wv} \in E : v \in L, w \in L} f_{vw}

fout(L)fin(L)=wvE:vL,wLfwv \phantom{f^{out}(L) - f^{in}(L) =}- \displaystyle\sum_{\overrightarrow{wv} \in E : v \in L, w \in L} f_{wv}

fout(L)fin(L)=vR+vL f^{out}(L) - f^{in}(L) = \phantom{-} v \leadsto R + v \leadsto L

fout(L)fin(L)=(Rv+Lv) \phantom{f^{out}(L) - f^{in}(L) =}- \left( R \leadsto v + L \leadsto v \right)

fout(L)fin(L)=vLfout(v)vLfin(v) f^{out}(L) - f^{in}(L) = \displaystyle\sum_{v \in L}f^{out}(v) - \displaystyle\sum_{v \in L}f^{in}(v)

fout(L)fin(L)=vLs(fout(v)fin(v))+fout(s) \phantom{f^{out}(L) - f^{in}(L)} = \displaystyle\sum_{v \in L - s}\left(f^{out}(v) - f^{in}(v) \right) + f^{out}(s)

fout(L)fin(L)=vLs(0)+fout(s) \phantom{f^{out}(L) - f^{in}(L)} = \displaystyle\sum_{v \in L - s}\left( 0 \right) + f^{out}(s)

fout(L)fin(L)=fout(s)=size(f) \phantom{f^{out}(L) - f^{in}(L)} = f^{out}(s) = \text{size}(f)

size(f)=fout(L)fin(L)fout(L)cap(L,R) \text{size}(f) = f^{out}(L) - f^{in}(L) \le f^{out}(L) \le \text{cap}(L,R)

Reverse Inequality

maxf size(f)min(L,R) cap(L,R) \displaystyle\max_f \text{ size}(f) \ge \displaystyle\min_{(L,R)}\text{ cap}(L,R)

Take flow f f^* from Ford-Fulkerson (which has no st-path in residual Gf G^{f^*} )

Let L = vertices reachable from s in Gf G^{f^*}

Let R = V - L

For vwE,vL,wR,fvw=cvw \text{For } \overrightarrow{vw} \in E, v \in L, w \in R, f_{vw}^* = c_vw

For vwE,vL,wR,fout= cap(L,R) \phantom{\text{For } \overrightarrow{vw} \in E, v \in L, w \in R,} f^{*out} = \text{ cap}(L,R)

For zyE,zR,yL,fzy=0 \text{For } \overrightarrow{zy} \in E, z \in R, y \in L, f_{zy}^* = 0

For zyE,zR,yL,fin=0 \phantom{\text{For } \overrightarrow{zy} \in E, z \in R, y \in L,} f^{*in} = 0

size(f)= cap(L,R) \text{size}(f^*) = \text{ cap}(L,R)